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THE COMPLEXITY OF PROVABLE PROPERTIES OF FIRST ORDER THEORIES

0. SUMMARY

This paper considers first order quantified and modal theories with the

interpretation of function and predicate symbols restricted to fixed r.e. sets

of functions F and predicates R. We characterize functions with certain

properties (such as totality, monotonicity, unboundedness) provable in these

theories. In the case F and R are restricted to a complexity class (such

as polynomial time), our results give a characterization of complexity hierar-

chies (such as the polynomial time hierarchy of Stockmeyer W in terms of

the strength of theories whose axioms have restricted quantification. In addi-

tion we construct formulas for which provability in these theories implies the

collapse of the corresponding complexity hierarchy.

We consider modal theories as well as purely quantified theories. Because

modal formulas can encode arbitrary alternations of quantifiers, provability

of certain formulas in these modal theories implies the collapse of complexity

hierarchies with unbounded alternation. This is applied to the P PSPACE

problem.

1. INTRODUCTION

Recent work by Kirby, Paris and Harrington (7] has caused renewed interest

in independence results in mathematical logic. Using new methods developed

by Paris and Kirby [12], a purely combinatorial statement of arithmetic was

shown to be independent of Peano's first order axioms for number theory. In

computer science this work together with the observations of Hartmanis and

Hopcroft [81 gave rise to the hope that similar methods could be developed to
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yield interesting independence and consistency results for other naturally

arising theories. While this idea has not been completely successful (see

O'Donnell [17] for a notable exception), related considerations have yielded

a flurry of results relating open problems in computer science and various

theories which arise naturally in their study. Significant work in this area

can be found in Leivant [15], Lipton and DeMillo (3,4], Lipton [16], Joseph

and Young [11], and most recently Paris and Dimitracopoulos [19].

The aim of this paper is to relate the strength of various first order

theories to unresolved complexity problems. DeMillo and Lipton have recently

considered a first order quantified logic PT whose function and predicate

symbols are restricted to polynomial time and whose axioms are all true 2

sentences of this logic. They construct a formula 0 for each s E NPn coNP
5

such that s EP iff PT j- . Thus P NP can be related to the strength

of PT. This paper considers a very general class of first order theories of

bounded complexity with a restricted interpretation of the function and predi-

cate symbols. In the main technical theorem we partially characterize the

strength of these theories. This result allows us to show that certain func-

tions can be proved within our theory to have particular properties. This

work is much in the spirit of Fischer (5] who considered the class of provably

total recursive functions.

As applications of the main theorem we have, for each k k2 a theory PTk

whose strength is related to the open problem P ? Y of the Stockmeyer

polynomial time hierarchy. In addition we have a quantified theory LST whose

proof strength we relate to the open problem deterministic linear-space =

nondeterministic linear-space. Finally, we consider a modal theory MPT and

relate it to the P PSPACE problem.
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2. PRELIMINARIRES: The Theory T(QkF,R).

Let N - {0,1,2,.... be the natural numbers. Let F be a recursively

enumerable set of functions on N closed under finite composition and containing

all the O-ary constant functions as well as the function (x) = lxi, where

Ixl denotes the length of the string x. Generally x will be an integer

represented as a binary string. We let f(k) designate a k-addic function.

We define pred (F) = {fEFlrange(f) c{O,l11}. Finally let R be an r.e. set of

predicates over N.

If 0 is a first order quantified formula of the form Q1X1 Q2X2.. Qkxk

A(xl,...,xk) where A(xI ...,xk) is a quantifier free formula and the quanti-

fiers QI,...,Qk E{V,3} alte:aate k-1 times, then we say 0 is in Ek-fOr

if QI = 3 and in f-forn if Q = V. A quantifier free formula is said to

be in both E 0form and 110 form. We define to be in Ak  if there are

formulas 4I,42 in Zk and "k form respectively such that N 1= "-+i1-42 .

We now define a theory T(QkF,R) where Qk E{rknk} and F and R

are as above. The idea is that T(QkF,R) is the theory whose axioms are all

true Qk formulas which have Skolem functions that are Zk-2 definable over

F and R. To make this notion precise we give the following definitions. The

language for our theory consists of symbols for all functions in F and predi-

cates in R together with the usual connectives and quantifiers of first

order logic. We call a function g: N -N Z -deffnable if there is am m

formula of our language which defines the function g. Note: To simplify

notation we will often write a formula as containing such 1 definable func-m

tions g. Such formulas could be precisely written by replacing all occurrences

of such functions by the Z formula which defines them. Now let C bem m

the class of all Z definable functions.
m
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Given a true (in the standard model) sentence 0 = 1xl3x2...Qxk A(x1 ... x)

in 1k form, we say the C contains Skolei f ctions for 0 if for some

1 2 1 2g ,g ,... i4 Cm we have YX1VX3... A(xg (x ),x 3g(xVx3,...). We now

let T(ZIkFR)[TIIkF,R)] be the collection of all k[lk I formulas with

Skolem functions in C k2[C k_] . The theory T(4JF,R) is

defined analogously. Also let T(QkF) = T(QkF,pred(f)). We say that T(QkF)

is a cor pleity theory over F if F is defined by a recursive bound on a

complexity measure (see Blum [11).

For example DeMillo and Liptor (3,4] consider:

(i) The "polynomial time" theory PT = T(Z2 ,poly) where poly is the

class of polynomial time computable functions. The equality is essentially

proved in [2].

(ii) The "poly-time predicate, arithmetic and exponential function" theory

ET = T(11 ,arith,pred(poly)) where arith consists of function built from

addition, multiplication and exponentiation. In (4) DeMillo and Lipton show

that ET +"P =NP" is a consistent theorem. It is interesting to note that their

proof is actually sufficient to show that ET is consistent with P = Tpoly

and then by compactness P = U Ipoly is consistent with ET.
k>o k

In our own applications we shall consider the "polynomial-time hierarchy

theory' PTk = T(Eklpoly). We may also allow F to correspond to other com-

plexity classes such ais the linear-space functions. Here we consider LST =

T(T2 1linear-space). In the last sections we consider a modal theory MPT

whose properties depend on PSPACE even though F = poly time for NPT.

L __
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3. "HERBRAND" THEOREMS FOR T(QkF)

In this section we give model theoretic proof of Herbrand expansion theorems

for the theories T(E k+2,F) and T(I k+2F). These theorems will be the main

technical tool used in later sections where we give lower bounds for the com-

plexity of provable properties in T(E k+2,F) and T( k+2,F).

We frequently write a formula in "standard form" where in the matrix of

the formula the universally quantified variables all preceed the existentially

quantified variable. More precisely we define a 11. sentence 4' to be in
)

k-standard form if D = QlxlQ2x2... A xU"xe) where Q V, A Ell and the

variables of A are partitioned into universal variables x and existential

variables ;e which appear in the same order in which they appear in A. Note

that if j -k is odd the A is actually in 1Ik_ rather than just in Rk'

For any RI. sentence c? in k-standard form and any C OC k-2' CO finite,

define

C YV A( g (--,)-
0g 1

1 . u~c. , x).. x)

Recall that Ck-2  is the collection of all Zk-2 definable functions of one

of our theories. So the g's which appear in the above formula represent Zk-2

formulas of our logic which define functions.

Before stating the main technical theorem we need the following proposition:

DEFINITION. Given two structures M1  and m2 we say M2 isa E k -

substructure of M1 if

(1) M2 is a substructure of MI.

(2) For any formula (D E k' if M1 0 $ then m2
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PROPOSITION. If M, .T(,k+2 , F) and M2 is a k-substructure of Ml

then 42  T(Ek+2 ,F).

Proof. Let 3xVyt(xIy) be a Ek+ 2 formula in T(Tk+2 ,F), where 0 (x,y)

is in E k Then N 3xy(x,y) so for some n0 EN, N k VyD(n0y). As M1

T(Ek+2 F) we have M, VyD(n0,Y). Now M is a E substructure of and

so any 1k+l formula true in M1 is true in M2 as well in particular M 2

VyO(n 0 ,y) and so M2 k- xVyD(x,y).

THEOREM IA. Let T = T(k+,F) and D be a Hj(j->k) formula in k-

k+2' j

standard form. Then T F(? implies that for some finite c 0 CCk , T C0.

Proof. Suppose T14 but TV1C 0 for any finite C 0C k . Let T* be

the theory derived from T by adding distinct constant symbols Cl,C2,..c u

to our language and adding axioms -A(c,g (x),g2(x lx 3)...), for every
1 2
g ,g ,... in Ck . Observe that T* is consistent. (Otherwise, by compact-

ness, there is a finite C0_Ck such that TI- C., contradicting our assump-

tion.) So T* has a model M. Let Ma be the submodel of M generated by

applying the functions of Ck to the constants which interpret cl, ... cu in

M. Then M_ is a Z -substructure of M. Now let ' be the formula 3x
c k

A(cx . Then as M T, by the above proposition we have M C 0'. But by

the definition of T* and the construction of M_ we have M. 1o', a contra-
c

diction which proves the theorem.

Similarly we can show,

THEOREM lB. If T = T(lk+IF) and 0 is a U. formula in k-standard

form then T -40 iMpZies T I-4C for some finite C C
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4. PROVABLE PROPERTIES OF FUNCTIONS

For x X1 ,...,x m  the formula c(_x) is x-bounded if each quantifier Q

of 0 has the form Qx(Ixl <max(Ix 1 K.., x m1)). We will usually write this

as Qx<*max(x). For any formula ip(x), let $ be the function such that

V Nm, 1() = 1 if ()x holds and f(x) = 0 otherwise. Define Qk

{IJ+ (x) is an x-bounded formula in the logic with symbols for elements of F

which are in Qk-form with m free variables}. Let f;N - (0,11 denpte S C N if
-l F F F

1fll. In the case that F = polynomial-time, Yk' nk' Ak denote the

complexity classes of the polynomial-time hierarchy of Stockmeyer [20].

.We say a function f: Nm- N is defined by a formula 0 if Vx,y f(x) y

iff 0 (x,y). Let B = iflf(x) is a function N -+ (0,11 defined by x-bounded

formula 9(x,y) of the logic}.

DEFINITION. f: Nm -N is provably total in a theory T if f is defined

by a formsLa 0 (x,y) and T -Vx3y G(x,y).

THEOREM 2A. For each k >1, let T = T(V ,F). Then {fEjIf is total}C

{fEBIf is provably 
total in T}c

F .

-k

Proof. (a) Let fEA F be total. Then there exists x-bounded formulas
k

@i, 2 in E.k-form such that f(x) = 1I iff iff p2 (x). Let 0(x,y) =

(y4l1 1 (X)) V (y=OA) 2 (x)). f is defined I G(x,y). Then Vxy®(x,y) is a

true Rk+l formula and hence an axiom of T (since f is its Skolem function).

So f is provably total in T.

(b) Let f: Nm -N where f EB and f is provably total in T. Then f

is defined by an x-bounded formula C(x,y) which can be represented as
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e(x,y) = QlZ1 I* max(x),... QMz <* max(x)A(x,z ,y,z

-e

where z are the existentially quantified variables among z.1 , ... ,z and

-U
- the universally quantified variables. Let P be the formula Vx~yG(x,y).

So we have Tj-'D and by Theorem 1A, for some finite Co0_C k , TI-tC0. From

the definition of 0 we see that

-u 1 m+l--u=Vx Vzu <* Max (x) VA(x-,zU,gl(x), .... g+ (x,zU)

01 m+l

Let OC (x,y) be the formula 1
0

_- *(-u 2- M+lu  1 max-x Mt EC 0A(x'z ,y'g (x'z 1 ) .... g (x,z
1g, ...g ElCo

T VxEc (x,y) and is an x-bounded 1k formula which holds in N iff

f(x) = y. So G(x,y) = 1 if f(x) = y and is 0 otherwise and we have

ec EflE~k C0 1
Note: This same theorem can be shown for the theory T(k+l ,F) rather than

T(Z" F+2 ).

The lower bounds of the above theorems can be shown as well for many other

properties of functions. For example they can be shown for functions which

are surjective Vyx f(x) = y and for functions which are unbounded, Vy3x f(x) >y.

In general, any class of functions definable by a 12 property are such that

any k members of the class are provably in the class.

F FLet Z, denote unrestricted quantification and let = As an

immediate consequence of Theorem 2A we have

COROLLARY: 2B. = {f E B f is provable total in T(X,,F)}.
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A similar corollary can be proved for any 12 definable property of functions.

In the case F = poly, the (total) polynomial-time computable functions,

we have P # I y  iff there is a total function f B :P°IY which isn't
k k

provably total in PT0 = T(72 ,poly). It should be noted, however, that we

cannot characterize the P - PSPACE problem by a similar technique in the

theory PT* = T(E,,poly) since each element of Zp° Iy  corresponds to a quan-

tified formula with some bounded alternation of quantifiers. We will use a

modal theory in Section 6 to characterize this problem since formulas in modal

logic can express unbounded alternation.

5. COMPLEXITY CLASSES AND HIERARCHIES OF PROVABILITY

In this section we construct formulas for which provability in our theories

implies collapse of the corresponding complexity classes.

F
TIEOREM 3A. For each k!0, j >k +1 and f EA , there is a forT.ta

J

such thz7 f ED iff T j-, 2he c T = T(2,F)
k+2'

(FI F if k=O and j>l.

D 1=

A otherwise.

Proof. Since f EF there must be x-bounded formulas and in)

.-form such that f(x) = 1 iff 4 1X) iff 2(x). For i = 1,2 let

Wi(X) = Ql z 1 *max(x),..... mzm-<*max(x)Gi(x,zU,z ), where G. is an x-bounded

nk formula and Q1 = V. Define D by VX l (x) V ; 2(x). So D may be written

as VxQ 1 z1 *max(x),...,Q *z max(x)A(x,z z e ) with A an x-bounded formula

in 1k-form.
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(a) Suppose f ED. Then A(x,zU,z e ) = A(x,z u ) where z are the univer-

sally quantified variables of z preceeding the first existential variable of

-. So 0 = VxVzU A(x,zu ) is a Hk formula (I if k =0) which is true in

N and hence an axiom of T.

(b) Suppose Tj-D. Then by Theorem 1A, for some finite Co SCk,

TI- c (x ) v 2,Cx)) where for i = 1,2 we have i. (x)
V~~lCO~i, (x)0x) =~

<* ma(x)...zu max(x) m G (x,zU ,gm(x),gm+l x- . x z )

•z ,g,.,zu< mxx (x,%I) ..... gmU09 u )

M m+u

g...g E c0

We then have f(x) = 1 iff l xc0x(x) iff N4 2,C0 (x). Let 4(x) = -2,C0(W.

F F F
If k = 0 and j >1 then lC 0  1 and E 71 so f EA I . Otherwise, if

^ F F
k>0, we have ,E IT and D EZ so fEA . In either case fED.

1 , Co k k k

Note: Theorem 3A generalizes the main result of DeMillo-Lipton [2].

Let f: Nm -Nn and L1 Nm, L2 CNn. We call f an F-reduction from L1

to L2 if f EF and xEL 1  iff f(x) EL 2 . L is F-conplete in D if LED

and for each L' ED there is an F-reduction from L' to L.

COROLLARY: 3B. Let D be as in Theorem 3A. If E has an eZerent

F
F-complete in D then there is a formula 0 such that F c D -1 T(k F)1-0j-i c - T(k+2' F, -

When F = poly there are a number of applications of the above results

to the polynomial time hierarchy of Stockmeyer. Let PTk = T(E k+2,poly). Then

since each 7poly has a poly-complete element, there is a formula 4) such that
i-1

YpAly -ApolY if PT 1-D for k>0 or j = 1, and there is a formula '
j-1 - k k

such that Y cAPoly iff PT01-4'j-1 -1 0
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There is a similar application for the case F = poly-space to the

hierarchy of k-bounded alternation machines with polynomial space. (See (2].)

6. COMPLEXITY OF PROVABLE PROPERTIES OF FIRST-ORDER MODAL THEORY

We note in this final section that our results extend to a first-order

theory with modal operator 0 (with the ..ripke semantics of the propositional

modal system K considered in [10] and [13]) and the usual first-order quan-

tifiers V and 3. Let MT(Q,F) be the first-order modal theory defined as

in the previously defined theories T(Q,F) but allowing our formulas to con-

tain the modal operator 0 and our theory to contain the modal axioms:

rule of necessity:

-0 A if !- A

and modal induction K:

1 1 (A D B) D (DA D OB).

The proof of Theorem 1A implies the following (somewhat more restricted)

"Herbrand" expansion result for the theory T = %T(Z*,F).

COROLLARY: 1A. 1f 0 is a ou-,ula of the ;orv- Vx3yxy(x,y) and if TI-' then

for some finite CO c C,,

T _ V O(x,gl (xl m

1 mEI .. g EC 0g g°

where C, = UCk.

Likewise, the proof of Theorem 2A implies a somewhat weaker result for

MT(],,F). Let = {^I(x) is an x-bounded modal formula with symbols for
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elements of F} and let MB = {flf(x) is a function N 1 (0,i defined by an

x-bounded modal formula).

COR. 2A. {f EMPIf is total} = {f EMBIf is provably total in MT(E.IF)}.

There are some interesting applications to complexity theory in the case

F = poly, the total polynomial-time computable functions. Stockmeyer (20) has

shown that the validity problem for the quantified boolean logic QBF

is PSPACE-complete, and Ladner (14] has shown the validity problem for

the propositional modal system K is PSPACE-complete. The propositional

modal system K augmented with quantification of boolean variables also has

a PSPACE-complete validity problem. This implies that MB is the

polynomial space computable 0,1 functions. Thus P # PSPACE if there is an

f EB, f lpolynomial-time such that f is not provably total in the theory

MT(,poly)I.
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